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.

1. Problems & Solutions

Problem 1. Let n > 1 and x1, x2, . . . , xn ∈ [0, 1]. Show that
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Solution. By the Cauchy-Schwarz’s inequality, we have
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On the other hand,
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This implies that
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Denote
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xi = A. By the arithmetic-geometric mean inequality, we have
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and thus the conclusion follows immediately. □
Marking Scheme:

• Application of the Cauchy-Schwarz’s inequality (4 point)
• Application of the AM-GM inequality (2 points)
• Finalize the argument (1 points)
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Problem 2. Determine all pairs P (x), Q(x) of complex monic polynomials such
that P (x) divides Q2(x) + 1 and Q(x) divides P 2(x) + 1.

Solution. The answer is (1, 1) and all pairs (P, P + i), (P, P − i), where P is a
non-constant monic polynomial in C[x] and i is the imaginary unit. If P |Q2+1 and
Q|P 2 + 1, we have that PQ|(P 2 + 1)(Q2 + 1) and hence PQ|P 2 +Q2 + 1.

Lemma. If P,Q ∈ C[x] are monic polynomials such that P 2 +Q2 +1 is divisible
by PQ, then degP = degQ.

Proof of the lemma. Assume for the sake of contradiction that there is a pair
(P,Q) with degP ̸= degQ. Among all these pairs, take the one with smallest sum
degP + degQ and let (P∗, Q∗) be such pair. Without loss of generality, suppose
that degP∗ > degQ∗. Let S be the polynomial such that

P 2
∗ +Q2

∗ + 1

P∗Q∗
= S.

Note that P∗ is one of the solutions of the polynomial equation R2−Q∗SR+Q2
∗+1 =

0, in variable R. By Vieta’s relation, we have that Q∗S − P∗ =
Q2

∗ + 1

P∗
is also a

solution of this equation. Because P∗, Q∗ are monic,
Q2

∗ + 1

P∗
is monic and there-

fore the pair

(
Q2

∗ + 1

P∗
, Q∗

)
satisfies the conditions of the Lemma. Notice that

deg
Q2

∗ + 1

P∗
= 2degQ∗ − degP∗ and by minimality, we have 2 degQ∗ − degP∗ +

degP∗ ≥ degP∗ + degQ∗, which give us degQ∗ ≥ degP∗. This contradiction estab-
lishes the Lemma.

By the Lemma, we have that deg(PQ) = deg(P 2+Q2+1) and therefore
P 2 +Q2 + 1

PQ
is a constant polynomial. If P and Q are constant polynomials, we have P = Q = 1.
Assuming that degP = degQ ≥ 1, as P and Q are monic, the leading coefficient of

P 2+Q2+1 is 2 and the leading coefficient of PQ is 1, which give us
P 2 +Q2 + 1

PQ
= 2.

Finally we have that P 2+Q2+1 = 2PQ and therefore (P −Q)2 = −1, i.e Q = P + i
or Q = P − i. It’s easy to check that these pairs are indeed solutions of the problem.

□
Marking Scheme:

• Guessing the answer (1 point)
• Proof of the lemma (4 points)
• Finalize the argument (2 points)

Problem 3. For every real number x1, construct the sequence x1, x2, . . . by
setting

xn+1 = xn

(
xn +

1

n

)
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for each n ≥ 1. Prove that there exists exactly one value of x1 for which 0 < xn <
xn+1 < 1 for every positive integer n.

Solution. It is obvious that, as a function of x1, xn = fn(x1) is a polynomial with
nonnegative coefficients and leading coefficients 1. So fn is strictly increasing and
convex. The inequality of the problem is equivalent to that 1 − 1

n
< xn < 1 for all

positive integer n. Define fn(an) = 1− 1
n
and fn(bn) = 1. Since

fn+1(an) = fn(an)

(
fn(an) +

1

n

)
= 1− 1
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< 1− 1

n+ 1
= fn+1(an+1)

and

fn+1(bn) = fn(bn)

(
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1

n

)
= 1 +

1

n
> 1 = fn+1(bn+1),

it follows that an < an+1 < bn+1 < bn for all n ≥ 1. On the other hand, since Pn(x)
is convex and Pn(bn) = 1, Pn(0) = 0, it follows that

Pn(x) <
x

bn
, 0 ≤ x ≤ bn.

Then we have 1 − 1
n
= Pn(an) <

an
bn
, thus an > bn − bn

n
> bn − 1

n
. So |bn − an| < 1

n

goes to 0 when n goes to infinity. The two sequence {an} and {bn} has the same
limit when n goes to infinity, this limit is the unique initial value of x1 such that
the requirement of the problem is satisfied.

□
Marking Scheme:

• Use limits of monotone sequences to prove existence. Key things is definition
of the bound sequences. Comparison of the bounds. (3 points)

• Use mean value theorem or convexity to prove uniqueness. Key things is
bound the difference of two bound or bound on the derivatives. (4 points)

Another solution. Consider, now, the following observations:
(a) If, at any point, xn+1 ≤ xn, then from here we know that

xn ≤ 1− 1

n
, xn+1 ≤ 1− 1

n
< 1− 1

n+ 1
→ xn+2 < xn+1, · · ·xm ≤ 1− 1

n
< 1− 1

m

which means that

xm+1 < xm,∀m > n

and therefore the sequence {xn} will be monotonically decreasing after one point.
(b) If some x does satisfy 0 < xn < xn+1 < 1 for all n, then 1 − 1

n
< xn < 1 for

all n, and therefore by Squeeze’s theorem limn→∞ xn = 1.
(c) If xn ≥ 1 for some n, then xn+1 = xn(xn + 1

n
) > x2

n ≥ 1 and so xn+m >

(xm+1)
2m−1

which then gives limn→∞ xn = +∞.
(d) If x1 = 0, then for each n, xn = 0. If x1 → ∞ then for each n (fixed),

xn → ∞. Thus, we can denote a mapping fn : R≥0 → R≥0 that maps x1 to xn,
which is continuous and monotonically increasing, with limx→+∞ fn(x) = +∞ so fn
is bijective.
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Let’s first show uniqueness. Suppose that {xn} and {yn} are both such sequences.
We have limn→∞ xn = limn→∞ yn = 1 and suppose that y1 > x1. Then for all n,

yn+1

xn+1

=
yn(yn +

1
n
)

xn(xn +
1
n
)
>

yn
xn

so inductively, yn+1

xn+1
> ( y1

x1
)n with limn→∞

yn+1

xn+1
= +∞. However, limn→∞ xn =

limn→∞ yn = 1 gives limn→∞
yn+1

xn+1
= 1

1
= 1, contradiction. Hence, the x1 that

satisfies this must be unique.
Next, let’s show existence. We have seen from above that, y1 > x1 implies yn > xn,

and that if xn > 1 for some n then {xn} is monotonically increasing after some point.
Suppose no such x1 exists. Let

A = {x1 : ∃n : xn+1 < xn} B = {x1 : ∃n : xn > 1}
then if x ∈ A, y ∈ A for all y < x and similarly x ∈ B, y ∈ B for all y > B. Notice
also an wasy fact that 1 ∈ B, so A is bounded. Define, now, c = glb(A). As we
assumed A ∪ B = R+, this c implies that x1 < c → x1 ∈ A and x1 > c → x1 ∈ B.
It remains to ask whether c ∈ A or c ∈ B.

If c ∈ A, then for this x1 := c, xn ≤ 1 − 1
n
and so xn+1 < 1 − 1

n+1
. Let yn+1 be

such that xn+1 < yn+1 < 1. By above, there’s exactly one y1 with fn+1(y1) < yn+1,
and notice that y1 > x1 = c by the monotonicity of fn+1. This means that there
exists y1 > c ∈ A, contradicting the definition of glb. A similar contradiction (but
opposite direction) can also be established for the case c ∈ B.

Hence c is neither in A or B, means that x1 = c should satisfy the problem
condition.□


