
INTERNATIONAL MATHEMATICS SUMMER CAMP IMSC23

MOCK TEST 4 SOLUTIONS-NUMBER THEORY

Date: Thursday, 29th June 2023 Time: 13:10-15:10
Number of problems: 3 Total points: 21

Problems & Solutions

Problem 1. Find the number of integers c such that −2023 ≤ c ≤ 2023 and
there exists an integer x such that x2 + c is a multiple of 22023

Solution. Mod 2n, an odd number is a quadratic residue if and only if it is ≡ 1
(mod 8). Indeed, note that (2x+1)1 ≡ 4x(x+1)+ 1 ≡ 1 (mod 8). Therefore, there
are at most 2n−3 distinct odd quadratic residues modulo 2n. On the other hand, I
claim that if 0 < x < y < 2n−2 are odd, then x2 ̸≡ 0 (mod 2n). Indeed, note that
2n > y2 − x2 > 0, hence x2 ̸≡ y2 (mod 2n). Therefore, we have at least 2n−3 odd
quadratic residues modulo 2n, so there must be exactly 2n−3 distinct odd quadratic
residues, as desired. Therefore, there are exactly. Obviously, 2k is a quadratic
residue for k even, so we only have to count the number of integers c such that c =
2k(8i+1), k even, and−2023 ≤ c ≤ 2023. But this is just 506+127+31+8+4 = 676.□

Marking scheme (additive):

• 4 points for proving that an odd number is quadratic residue modulo 2n if
and only if n ≡ 1 (mod 8).

• 3 points for finalizing.

Problem 2. A positive integer m is perfect if the sum of all its positive divisors,
1 and m inclusive, is equal to 2m. Determine the positive integers n such that nn+1
is a perfect number.

Remark: The exam took place on 28.6.2023 . . . 28 and 6 are both perfect numbers
:)

Solution. One can easily check that n = 3 works. We prove that it’s the only
solution. We’ll define σ(n) to be the sum of all divisors of n, and so we want to find
n such that σ(nn + 1) = 2(nn + 1). Note that σ(ab) = σ(a)σ(b) if gcd(a, b) = 1.
Lemma: If n is an even perfect number, then n = 2p−1(2p − 1), where p is prime.
Proof of lemma: It is easy to prove that if n = 2p−1(2p − 1), where p and 2p − 1 are
prime, then n is a perfect number. On the other hand, assume that n is an even
perfect number and write n = 2im,m odd. We have that

2i+1m = 2n = σ(n) = σ(2i)σ(m) = σ(m)(2i+1 − 1)
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hence σ(m) = 2i+1m/(2i+1 − 1). Since σ ∈ N, we must have that 2i+1 − 1|m. But
then σ(m) = m +m/(2i+1 − 1), which are both divisors of m. Therefore, we must
have that m is prime and 2i+1 − 1 = m. Rewriting, we have that n = 2p−1(2p − 1), p
and 2p−1 − 1 prime.
Going back to the problem, assume that n is odd. We have that nn + 1 is even, so
it must be of the form 2p−1(2p − 1), p and 2p−1 − 1 prime. Since n = 1 doesn’t yield
a solution, we can assume that n > 1. Therefore,

2p−1(2p − 1)nn + 1 = (n+ 1)(nn−1 − . . .+ 1)

Since n is odd, the first factor is even and the second is odd. Note that as n > 1,
we have

nn−1 − . . .+ 1 ≥ nn−2(n− 1) + 1 ≥ 2n+ 1

On the other hand, we have that n + 1 ≥ 2p−1 and nn−1 − . . . + 1 ≤ 2p − 1, hence
we must have equality in all the previous equalities, as

2p − 1 ≥ nn−1 − . . .+ 1 ≥ 2n+ 1 = 2(n+ 1)− 1 ≥ 2p − 1

In particular, we must have nn−1− . . .+1 = nn−2(n−1)+1, hence n = 3, as desired.
Assume now that n is even, so nn + 1 is odd (note that the existence of odd perfect
numbers is still an open conjecture). We will prove that 3|n. If this is not the case,
then nn + 1 ≡ 2 (mod 3). Therefore, N := nn + 1 is not a square, hence d+N/d is
divisible by 3 for each divisor d of n. In particular, we have that

σ(N) =
∑
d|N

d =
∑

d|N,d<
√
N

d+
N

d
≡ 0 (mod 3)

However, we assumed that N ≡ 2 (mod 3), so we get a contradiction. Therefore,
we have that 3|n.
Let k = nn/6 and note that

nn + 1 = k6 + 1 = (k2 + 1)(k4 − k2 + 1)

It is easy to prove that gcd(k2 + 1, k4 − k2 + 1) = 1, so

2(nn + 1) = σ(nn + 1) = σ(k2 + 1)σ(k4 − k2 + 1)

Therefore, v2(σ(k
2 + 1)σ(k4 − k2 + 1)) = v2(2(n

n + 1)) = 1, so exactly one of
k2 + 1, k4 − k2 + 1 is odd. But σ(x) is odd if and only if x is a perfect square.
However, k2 − 1 is not a perfect square, and neither is k4 − k2 + 1, as (k2 − 1)2 <
k4 − k2 + 1 < (k2)2. Therefore, nn + 1 is not a perfect number.

Marking scheme (additive):

• 1 point for proving that if n is an even perfect number, then n = 2p−1(2p−1), p
and 2p−1 − 1 prime.

• 1 point for proving that if n is odd, then n = 3.
• 2 points for proving that if n is even, then 3 divides n.
• 3 points for finalizing.
• Ph.D. for proving there aren’t any odd perfect numbers (or giving an exam-
ple)
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Problem 3. Let P be the set of all primes, and let M be a non-empty subset
of P . Suppose that for any non-empty subset p1, p2, ..., pk of M , all prime factors of
p1p2...pk + 1 are also in M . Prove that M = P
Proof. Assume there is a prime p /∈ M. Some residues (mod p) occur infinitely

often as primes in M, and others only occur finitely often. Take all primes in M
equivalent to the latter residues (only finitely many) and put them in a subset
S ∈ M. Call a finite subset T of M good if S ∈ T. Denote P (T ) as the product of
the elements in T.

We create a sequence of good subsets. Take T1 = S, and suppose P (S) = s. Let
the prime factorization of s+ 1 be pa11 pa22 . . . pakk . Note p1, p2, . . . pk ∈ M \ S.

In the prime factorization, replace each paii with ai distinct primes in M \ S
equivalent to pi (mod p), so the primes replacing paii and pakk are disjoint for any
i ̸= k. This can be done since there are infinitely many primes in M \S that are ≡ pi
(mod p). Then the product of these primes taken over all paii is ≡ s+ 1 (mod p). If
T2 is the union of these primes and S, then P (T2) ≡ s2 + s (mod p).
Extending this process creates a sequence of good subsets T1, T2, T3 . . . with prod-

ucts equivalent to s, s2 + s, s3 + s2 + s . . . modulo p.

Claim. Unless s ≡ 0 (mod p), the sequence s+ 1, s2 + s+ 1, s3 + s2 + s+ 1, . . .
must eventually hit 0 (mod p).

Proof of the claim. If s ≡ 1, then sn−1 + sn−2 + . . . + 1 ≡ 0 (mod p). Otherwise,
see that

0 ≡ sp−1 − 1

s− 1
= sp−2 + sp−3 + · · ·+ 1 (mod p)

So eventually we’ll get a good subset T where the P (T )+1 ≡ 0 (mod p), implying
p ∈ M, contradiction.

Marking scheme(additive):

• 2 points for fixing p /∈ M and considering the set S of residues that appear
finitely many in M.

• 3 points for creating the sequence of good subsets.
• 2 points for finalizing.


