INTERNATIONAL MATHEMATICS SUMMER CAMP IMSC23
MOCK TEST 4 SOLUTIONS-NUMBER THEORY

Date: Thursday, 29th June 2023 Time: 13:10-15:10
Number of problems: 3 Total points: 21

PROBLEMS & SOLUTIONS

Problem 1. Find the number of integers ¢ such that —2023 < ¢ < 2023 and
there exists an integer  such that 22 + ¢ is a multiple of 229

Solution. Mod 2", an odd number is a quadratic residue if and only if it is = 1
(mod 8). Indeed, note that (2z+1)! =4x(x+1)+1 =1 (mod 8). Therefore, there
are at most 2"~ distinct odd quadratic residues modulo 2". On the other hand, I
claim that if 0 < z < y < 272 are odd, then 2% Z 0 (mod 2"). Indeed, note that
2" > y* — 2% > 0, hence z* # y* (mod 2"). Therefore, we have at least 2"~ odd
quadratic residues modulo 2", so there must be exactly 273 distinct odd quadratic
residues, as desired. Therefore, there are exactly. Obviously, 2* is a quadratic
residue for k even, so we only have to count the number of integers ¢ such that ¢ =
2k (8i+1), k even, and —2023 < ¢ < 2023. But this is just 506+127+31+8+4 = 676.0]

Marking scheme (additive):

e 4 points for proving that an odd number is quadratic residue modulo 2" if
and only if n =1 (mod 8).
e 3 points for finalizing.

Problem 2. A positive integer m is perfect if the sum of all its positive divisors,
1 and m inclusive, is equal to 2m. Determine the positive integers n such that n" +1
is a perfect number.

Remark: The exam took place on 28.6.2023. .. 28 and 6 are both perfect numbers
)

Solution. One can easily check that n = 3 works. We prove that it’s the only
solution. We'll define o(n) to be the sum of all divisors of n, and so we want to find
n such that o(n™ + 1) = 2(n™ + 1). Note that o(ab) = o(a)o(b) if ged(a,b) = 1.
Lemma: If n is an even perfect number, then n = 2P~1(2F — 1), where p is prime.
Proof of lemma: Tt is easy to prove that if n = 2P71(2P — 1), where p and 27 — 1 are
prime, then n is a perfect number. On the other hand, assume that n is an even
perfect number and write n = 2%m, m odd. We have that

27 m = 2n = o(n) = o(2")a(m) = a(m)(2" — 1)
1
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hence o(m) = 2°7'm /(271 — 1). Since 0 € N, we must have that 27! — 1|m. But
then o(m) = m + m/(2** — 1), which are both divisors of m. Therefore, we must
have that m is prime and 27! — 1 = m. Rewriting, we have that n = 2P71(2P — 1), p
and 2°~! — 1 prime.

Going back to the problem, assume that n is odd. We have that n"™ 4+ 1 is even, so
it must be of the form 2P~1(27 — 1), p and 2P~ — 1 prime. Since n = 1 doesn’t yield
a solution, we can assume that n > 1. Therefore,

27N — "+ 1=+ )" —.. 1)

Since n is odd, the first factor is even and the second is odd. Note that as n > 1,
we have

- 4+1>n"Pn—-1)+1>2n+1
On the other hand, we have that n +1 > 27"t and n" ! — ... +1 < 2P — 1, hence
we must have equality in all the previous equalities, as
2 —1>n" - 1>+ 1=2n+1)—-1>2"—1
In particular, we must have n" ! —.. . +1 =n""2(n—1)+1, hence n = 3, as desired.

Assume now that n is even, so n” 4+ 1 is odd (note that the existence of odd perfect
numbers is still an open conjecture). We will prove that 3|n. If this is not the case,
then n" +1 =2 (mod 3). Therefore, N :=n" 4 1 is not a square, hence d + N/d is
divisible by 3 for each divisor d of n. In particular, we have that

O’(N):Zd: Z d+%50 (mod 3)

d|N d|N,d</N

However, we assumed that N = 2 (mod 3), so we get a contradiction. Therefore,
we have that 3|n.
Let k = n"/® and note that

n"+1=k+1=Fk+1)F -k +1)
It is easy to prove that ged(k% + 1,k* —k* +1) =1, so
2(n" +1) =o(n"+1) =o(k* + Do(k* — k* + 1)
Therefore, vy(o(k* + 1)o(k* — k* + 1)) = v2(2(n™ + 1)) = 1, so exactly one of
kK + 1,k* — k* + 1 is odd. But o(z) is odd if and only if x is a perfect square.

However, k* — 1 is not a perfect square, and neither is k* — k% + 1, as (K — 1)% <
k* — k? + 1 < (k*)?. Therefore, n™ + 1 is not a perfect number.

Marking scheme (additive):

e 1 point for proving that if n is an even perfect number, then n = 2P=1(2P—1), p
and 2P~ — 1 prime.

1 point for proving that if n is odd, then n = 3.

2 points for proving that if n is even, then 3 divides n.

3 points for finalizing.

Ph.D. for proving there aren’t any odd perfect numbers (or giving an exam-

ple)
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Problem 3. Let P be the set of all primes, and let M be a non-empty subset
of P. Suppose that for any non-empty subset p1, pa, ..., pr. of M, all prime factors of
p1p2---pr + 1 are also in M. Prove that M = P

Proof. Assume there is a prime p ¢ M. Some residues (mod p) occur infinitely
often as primes in M, and others only occur finitely often. Take all primes in M
equivalent to the latter residues (only finitely many) and put them in a subset
S € M. Call a finite subset T of M good if S € T. Denote P(T) as the product of
the elements in T

We create a sequence of good subsets. Take 77 = S, and suppose P(S) = s. Let
the prime factorization of s + 1 be pi*p5*...p*. Note p1,pa,...pp € M\ S.

In the prime factorization, replace each p{* with a; distinct primes in M \ S
equivalent to p; (mod p), so the primes replacing p;" and p}* are disjoint for any
i # k. This can be done since there are infinitely many primes in M\ S that are = p;
(mod p). Then the product of these primes taken over all pj* is = s+ 1 (mod p). If
T, is the union of these primes and S, then P(T3) = s* + s (mod p).

Extending this process creates a sequence of good subsets T, 75,75 ... with prod-
ucts equivalent to s, s + s, s + 5% + s... modulo p.

Claim. Unless s =0 (mod p), the sequence s +1,8* + s+ 1,8+ s> +s+1,...
must eventually hit 0 (mod p).
Proof of the claim. If s =1, then s" ! + 5" 24+ ... +1=0 (mod p). Otherwise,

see that
sPmt—1
05—1:5p72+3p’3+---—|—1 (mod p)
S —
So eventually we’ll get a good subset T" where the P(T')+1 =0 (mod p), implying
p € M, contradiction.

Marking scheme(additive):

e 2 points for fixing p ¢ M and considering the set S of residues that appear
finitely many in M.

e 3 points for creating the sequence of good subsets.

e 2 points for finalizing.



